Beschreibung
Since the publication of the successful first edition of the book in 2010, the field has matured and a large number of advancements have been made to the science of polymer nanotube nanocomposites (PNT) in terms of synthesis, filler surface modification, as well as properties. Moreover, a number of commercial applications have been realized. The aim of this second volume of the book is, thus, to update the information presented in the first volume as well as to incorporate the recent research and industrial developments.
This edited volume brings together contributions from a variety of senior scientists in the field of polymer nanotube composites technology to shed light on the recent advances in these commercially important areas of polymer technology. The book provides the following features:
Reviews the various synthesis techniques, properties and applications of the polymer nanocomposite systems.Describes the functionalization strategies for single walled nanotubes in order to achieve their nanoscale dispersion in epoxy matrices.Provides insights into the multiscale modeling of the properties of PNT.Provides perspectives on the electron microscopy characterization of PNT.Presents an overview of the different methodologies to achieve micro-patterning of PNT.Describes the recent progress on hybridization modifications of CNTs with carbon nanomaterials and their further applications in polymer nanocomposites.Provides details on the foams generates with PNT.Provides information on synthesis and properties of polycarbonate nanocomposite.Describes the advanced microscopy techniques for understanding of the polymer/nanotube composite interfaces and properties.
Autorenportrait
Vikas Mittal is currently an assistant professor in the Chemical Engineering Department of The Petroleum Institute at Abu Dhabi. He obtained his PhD in 2006 from the Swiss Federal Institute of Technology in Zurich, Switzerland. He also worked as a polymer engineer at BASF Polymer Research in Ludwigshafen, Germany. His research interests include polymer nanocomposites, compatibilization of organic and inorganic materials, polymer colloids, thermal stability studies, and? anti-corrosion coatings.?He has published more than 50 journal publications, authored as well as edited several books on these subjects.
Inhalt
Preface xiii
1 Polymer Nanotube Nanocomposites: A Review of Synthesis Methods, Properties and Applications 1
Joel Fawaz and Vikas Mittal
1.1 Introduction 2
1.2 Methods of Nanotube Nanocomposites Synthesis 4
1.3 Properties of Polymer Nanotube Nanocomposites 18
1.4 Applications 38
References 40
2 Functionalization Strategies for Single-Walled Carbon Nanotubes Integration into Epoxy Matrices 45
J.M. González-Domínguez, A.M. Díez-Pascual, A. Ansón-Casaos, M.A. Gómez-Fatou, and M. T. Martínez
2.1 Introduction 46
2.2 Covalent Strategies for the Production of SWCNT 51
2.3 Non-covalent Strategies for the Production of SWCNT/Epoxy Composites 62
2.4 Effect of Functionalization on the Epoxy Physical Properties 76
2.5 Applications of Functionalized SWCNTs in Epoxy Composites 104
2.6 Concluding Remarks and Future Outlook 106
Acknowledgements 108
References 109
3 Multiscale Modeling of Polymer?Nanotube Nanocomposites 117
Maenghyo Cho and Seunghwa Yang
3.1 Introduction 117
3.2 Molecular Modeling and Simulation of CNT-Polymer Nanocomposites 121
3.3 Micromechanics Modeling and Simulation of CNT-Polymer Nanocomposites 132
3.4 Fully Integrated Multiscale Model for Elastoplastic Behavior with Imperfect Interface 145
3.5 Conclusion and Perspective on Future Trends 158
References 160
4 SEM and TEM Characterization of Polymer Nanotube Nanocomposites 167
Francisco Solá
4.1 Introduction 167
4.2 Imaging CNTs in Polymer Matrices by SEM 168
4.3 Mechanical Properties of CNT/Polymer Nanocomposites by In-Situ SEM 172
4.4 Imaging CNT in Polymer Matrices by TEM 176
4.5 Mechanical Properties of CNT/Polymer Nanocomposites by In-Situ TEM 180
4.6 Conclusions and Future Outlook 181
Acknowledgement 182
References 183
5 Polymer-Nanotube Nanocomposites for Transfemoral Sockets 187
S. Arun and S. Kanagaraj
5.1 Introduction 188
5.2 Materials Used for the Socket System 190
5.3 Summary 204
Acknowledgements 204
References 204
6 Micro-Patterning of Polymer Nanotube Nanocomposites 211
Naga S. Korivi
6.1 Introduction 211
6.2 Micro-Patterning Methods 213
6.3 Conclusions 230
Acknowledgments 231
References 231
7 Carbon Nanotube-Based Hybrid Materials and Their Polymer Composites 239
Tianxi Liu, Wei Fan, and Chao Zhang
7.1 Introduction 240
7.2 Structures and Properties of Carbon Nanomaterials 242
7.3 Strategies for the Hybridization of CNTs with Carbon Nanomaterials 247
7.4 Preparation of CNT-Based Hybrid Reinforced Polymer Nanocomposites 257
7.5 Physical Properties of CNT-Based Hybrid Reinforced Polymer Nanocomposites 262
7.6 Summary 272
Acknowledgements 273
References 273
8 Polymer-Carbon Nanotube Nanocomposite Foams 279
Marcelo Antunes and José Ignacio Velasco
8.1 Introduction 279
8.2 Basic Concepts of Polymer Nanocomposite Foams 281
8.3 Main Polymer Nanocomposite Foaming Technologies 282
8.4 Polymer-Carbon Nanotube Nanocomposite Foams 287
8.5 Recent Developments and New Applications of Polymer- Carbon Nanotube Nanocomposite Foams 312
8.6 Conclusions 320
Acknowledgements 322
References 323
9 Processing and Properties of Carbon Nanotube/Polycarbonate Composites 333
Shailaja Pande, Bhanu Pratap Singh, and Rakesh Behari Mathur
9.1 Introduction 333
9.2 Fabrication/ Processing of CNT/PC Composites 335
9.3 Mechanical Properties of CNT/PC Composites 344
9.4 Electrical Properties of CNT/PC Composites 355
9.5 Conclusions 359
References 361
10 Advanced Microscopy Techniques for a Better Understanding of the Polymer/Nanotube Composite Properties 365
K. Masenelli-Varlot, C. Gauthier, L. Chazeau, F. Dalmas, T. Epicier, and J.Y. Cavaillé
10.1 Introduction 365
10.2 Near-Field Microscopies 367
10.3 Transmission Electron Microscopy 372
10.4 Scanning Electron Microscopy 387
10.5 Focused Ion Beam Microscopy 395
10.6 Conclusions 396
Acknowledgements 398
References 398
11 Visualization of CNTs in Polymer Composites 405
Wenjing Li and Wolfgang Bauhofer
11.1 Introduction 405
11.2 Experimental 408
11.3 Visualization of CNTs at High Accelerating Voltage (5-15 kV) 408
11.4 Visualization of CNTs at Low Accelerating Voltage (0.3-5 kV) 417
11.5 Essential Requirements and Tips for CNT Visualization 423
11.6 Conclusion 424
Acknowledgement 425
References (with DOI) 425
Reference List 426
12 Polymer Nanotube Composites: Latest Challenges and Applications 429
Amal M. K. Esawi and Mahmoud M. Farag
12.1 Carbon Nanotubes 430
12.2 Case Studies 440
12.3 Conclusions 459
References 460
Index
Informationen zu E-Books
Individuelle Erläuterung zu E-Books