Preface xi
PART I ESSENTIAL CONCEPTS IN STATISTICS
1 Introducing Point and Interval Estimation 3
1.1 Point Estimation / 4
1.1.1 Bernoulli Model / 4
1.1.2 Geometric Model / 6
1.1.3 Some Remarks on Bias and Consistency / 11
1.2 Interval Estimation via Simulation / 12
1.3 Interval Estimation via the Bootstrap / 18
1.3.1 Computation and Comparison with Parametric Bootstrap / 18
1.3.2 Application to Bernoulli Model and Modification / 20
1.3.3 Double Bootstrap / 24
1.3.4 Double Bootstrap with Analytic Inner Loop / 26
1.4 Bootstrap Confidence Intervals in the Geometric Model / 31
1.5 Problems / 35
2 Goodness of Fit and Hypothesis Testing 37
2.1 Empirical Cumulative Distribution Function / 38
2.1.1 The GlivenkoCantelli Theorem / 38
2.1.2 Proofs of the GlivenkoCantelli Theorem / 41
2.1.3 Example with Continuous Data and Approximate Confidence Intervals / 45
2.1.4 Example with Discrete Data and Approximate Confidence Intervals / 49
2.2 Comparing Parametric and Nonparametric Methods / 52
2.3 KolmogorovSmirnov Distance and Hypothesis Testing / 57
2.3.1 The KolmogorovSmirnov and AndersonDarling Statistics / 57
2.3.2 Significance and Hypothesis Testing / 59
2.3.3 Small-Sample Correction / 63
2.4 Testing Normality with KD and AD / 65
2.5 Testing Normality withW2 andU2 / 68
2.6 Testing the Stable Paretian Distributional Assumption: First Attempt / 69
2.7 Two-Sample Kolmogorov Test / 73
2.8 More on (Moron?) Hypothesis Testing / 74
2.8.1 Explanation / 75
2.8.2 Misuse of Hypothesis Testing / 77
2.8.3 Use and Misuse ofp-Values / 79
2.9 Problems / 82
3 Likelihood 85
3.1 Introduction / 85
3.1.1 Scalar Parameter Case / 87
3.1.2 Vector Parameter Case / 92
3.1.3 Robustness and the MCD Estimator / 100
3.1.4 Asymptotic Properties of the Maximum Likelihood Estimator / 102
3.2 CramérRao Lower Bound / 107
3.2.1 Univariate Case / 108
3.2.2 Multivariate Case / 111
3.3 Model Selection / 114
3.3.1 Model Misspecification / 114
3.3.2 The Likelihood Ratio Statistic / 117
3.3.3 Use of Information Criteria / 119
3.4 Problems / 120
4 Numerical Optimization 123
4.1 Root Finding / 123
4.1.1 One Parameter / 124
4.1.2 Several Parameters / 131
4.2 Approximating the Distribution of the Maximum Likelihood Estimator / 135
4.3 General Numerical Likelihood Maximization / 136
4.3.1 NewtonRaphson and Quasi-Newton Methods / 137
4.3.2 Imposing Parameter Restrictions / 140
4.4 Evolutionary Algorithms / 145
4.4.1 Differential Evolution / 146
4.4.2 Covariance Matrix Adaption Evolutionary Strategy / 149
4.5 Problems / 155
5 Methods of Point Estimation 157
5.1 Univariate Mixed Normal Distribution / 157
5.1.1 Introduction / 157
5.1.2 Simulation of Univariate Mixtures / 160
5.1.3 Direct Likelihood Maximization / 161
5.1.4 Use of the EM Algorithm / 169
5.1.5 Shrinkage-Type Estimation / 174
5.1.6 Quasi-Bayesian Estimation / 176
5.1.7 Confidence Intervals / 178
5.2 Alternative Point Estimation Methodologies / 184
5.2.1 Method of Moments Estimator / 185
5.2.2 Use of Goodness-of-Fit Measures / 190
5.2.3 Quantile Least Squares / 191
5.2.4 Pearson Minimum Chi-Square / 193
5.2.5 Empirical Moment Generating Function Estimator / 195
5.2.6 Empirical Characteristic Function Estimator / 198
5.3 Comparison of Methods / 199
5.4 A Primer on Shrinkage Estimation / 200
5.5 Problems / 202
PART II FURTHER FUNDAMENTAL CONCEPTS IN STATISTICS
6 Q-Q Plots and Distribution Testing 209
6.1 P-P Plots and Q-Q Plots / 209
6.2 Null Bands / 211
6.2.1 Definition and Motivation / 211
6.2.2 Pointwise Null Bands via Simulation / 212
6.2.3 Asymptotic Approximation of Pointwise Null Bands / 213
6.2.4 Mapping Pointwise and Simultaneous Significance Levels / 215
6.3 Q-Q Test / 217
6.4 Further P-P and Q-Q Type Plots / 219
6.4.1 (Horizontal) Stabilized P-P Plots / 219
6.4.2 Modified S-P Plots / 220
6.4.3 MSP Test for Normality / 224
6.4.4 Modified Percentile (Fowlkes-MP) Plots / 228
6.5 Further Tests for Composite Normality / 231
6.5.1 Motivation / 232
6.5.2 JarqueBera Test / 234
6.5.3 Three Powerful (and More Recent) Normality Tests / 237
6.5.4 Testing Goodness of Fit via Binning: PearsonsX P2 Test / 240
6.6 Combining Tests and Power Envelopes / 247
6.6.1 Combining Tests / 248
6.6.2 Power Comparisons for Testing Composite Normality / 252
6.6.3 Most Powerful Tests and Power Envelopes / 252
6.7 Details of a Failed Attempt / 255
6.8 Problems / 260
7 Unbiased Point Estimation and Bias Reduction 269
7.1 Sufficiency / 269
7.1.1 Introduction / 269
7.1.2 Factorization / 272
7.1.3 Minimal Sufficiency / 276
7.1.4 The RaoBlackwell Theorem / 283
7.2 Completeness and the Uniformly Minimum Variance Unbiased Estimator / 286
7.3 An Example with i.i.d. Geometric Data / 289
7.4 Methods of Bias Reduction / 293
7.4.1 The Bias-Function Approach / 293
7.4.2 Median-Unbiased Estimation / 296
7.4.3 Mode-Adjusted Estimator / 297
7.4.4 The Jackknife / 302
7.5 Problems / 305
8 Analytic Interval Estimation 313
8.1 Definitions / 313
8.2 Pivotal Method / 315
8.2.1 Exact Pivots / 315
8.2.2 Asymptotic Pivots / 318
8.3 Intervals Associated with Normal Samples / 319
8.3.1 Single Sample / 319
8.3.2 Paired Sample / 320
8.3.3 Two Independent Samples / 322
8.3.4 Welchs Method for𝜇1 𝜇2 when𝜎12 𝜎22/ 323
8.3.5 Satterthwaites Approximation / 324
8.4 Cumulative Distribution Function Inversion / 326
8.4.1 Continuous Case / 326
8.4.2 Discrete Case / 330
8.5 Application of the Nonparametric Bootstrap / 334
8.6 Problems / 337
PART III ADDITIONAL TOPICS
9 Inference in a Heavy-Tailed Context 341
9.1 Estimating the Maximally Existing Moment / 342
9.2 A Primer on Tail Estimation / 346
9.2.1 Introduction / 346
9.2.2 The Hill Estimator / 346
9.2.3 Use with Stable Paretian Data / 349
9.3 Noncentral Studentst Estimation / 351
9.3.1 Introduction / 351
9.3.2 Direct Density Approximation / 352
9.3.3 Quantile-Based Table Lookup Estimation / 353
9.3.4 Comparison of NCT Estimators / 354
9.4 Asymmetric Stable Paretian Estimation / 358
9.4.1 Introduction / 358
9.4.2 The Hint Estimator / 359
9.4.3 Maximum Likelihood Estimation / 360
9.4.4 The McCulloch Estimator / 361
9.4.5 The Empirical Characteristic Function Estimator / 364
9.4.6 Testing for Symmetry in the Stable Model / 366
9.5 Testing the Stable Paretian Distribution / 368
9.5.1 Test Based on the Empirical Characteristic Function / 368
9.5.2 Summability Test and Modification / 371
9.5.3 ALHADI: The𝛼-Hat Discrepancy Test / 375
9.5.4 Joint Test Procedure / 383
9.5.5 Likelihood Ratio Tests / 384
9.5.6 Size and Power of the Symmetric Stable Tests / 385
9.5.7 Extension to Testing the Asymmetric Stable Paretian Case / 395
10 The Method of Indirect Inference 401
10.1 Introduction / 401
10.2 Application to the Laplace Distribution / 403
10.3 Application to Randomized Response / 403
10.3.1 Introduction / 403
10.3.2 Estimation via Indirect Inference / 406
10.4 Application to the Stable Paretian Distribution / 409
10.5 Problems / 416
A Review of Fundamental Concepts in Probability Theory 419
A.1 Combinatorics and Special Functions / 420
A.2 Basic Probability and Conditioning / 423
A.3 Univariate Random Variables / 424
A.4 Multivariate Random Variables / 427
A.5 Continuous Univariate Random Variables / 430
A.6 Conditional Random Variables / 432
A.7 Generating Functions and Inversion Formulas / 434
A.8 Value at Risk and Expected Shortfall / 437
A.9 Jacobian Transformations / 451
A.10 Sums and Other Functions / 453
A.11 Saddlepoint Approximations / 456
A.12 Order Statistics / 460
A.13 The Multivariate Normal Distribution / 462
A.14 Noncentral Distributions / 465
A.15 Inequalities and Convergence / 467
A.15.1 Inequalities for Random Variables / 467
A.15.2 Convergence of Sequences of Sets / 469
A.15.3 Convergence of Sequences of Random Variables / 473
A.16 The Stable Paretian Distribution / 483
A.17 Problems / 492
A.18 Solutions / 509
References 537
Index 561