banner-tegeler-buecherstube-hdneu.jpg

banner-buchhandlung-menger-hdneu.jpg

banner-buchhandlung-haberland-hdneu.jpg

banner-buchhandlung-anagramm-hd_1.jpg

0

Attractors and Methods

Volume 2: Attractor and Methods in Dynamic System, Infinite-Dimensional Dynamical Systems 2

Guo, Boling/Ling, Liming/Ma, Yansheng et al
Erschienen am 09.07.2018, 1. Auflage 2018
154,95 €
(inkl. MwSt.)

Vorbestellung vorauss. lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783110586992
Sprache: Englisch
Umfang: VIII, 405 S., 30 s/w Illustr., 30 b/w ill.
Einband: gebundenes Buch

Beschreibung

This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the fi rst volume is on the existence and properties for attractors and inertial manifolds. This volume highlights the use of modern analytical tools and methods such as the geometric measure method, center manifold theory in infinite dimensions, the Melnihov method, spectral analysis and so on for infinite-dimensional dynamical systems. The second volume includes the properties of global attractors, the calculation of discrete attractors, structures of small dissipative dynamical systems, and the existence and stability of solitary waves. Contents Discrete attractor and approximate calculation Some properties of global attractor Structures of small dissipative dynamical systems Existence and stability of solitary waves

Autorenportrait

B. Guo, Inst. of Appl. Phys. & Comp. Math.; L. Ling, South China U. of Tech.; Y. Ma, Northeast Normal U.; H. Yang, Yunnan Normal U.

Weitere Artikel vom Autor "Guo, Boling/Ling, Liming/Ma, Yansheng et al"

Alle Artikel anzeigen